229 research outputs found

    Structures and intermittency in a passive scalar model

    Full text link
    A one-dimensional white-in-time passive scalar model is introduced. Strong and persistent structures are shown to be present. A perturbative expansion for the scaling exponents is performed around a Gaussian limit of the model. The resulting predictions are compared with numerical simulations.Comment: 8 pages, 4 figure

    Intermittency in passive scalar advection

    Full text link
    A Lagrangian method for the numerical simulation of the Kraichnan passive scalar model is introduced. The method is based on Monte--Carlo simulations of tracer trajectories, supplemented by a point-splitting procedure for coinciding points. Clean scaling behavior for scalar structure functions is observed. The scheme is exploited to investigate the dependence of scalar anomalies on the scaling exponent ξ\xi of the advecting velocity field. The three-dimensional fourth-order structure function is specifically considered.Comment: 4 pages, 5 figure

    Active vs passive scalar turbulence

    Full text link
    Active and passive scalars transported by an incompressible two-dimensional conductive fluid are investigated. It is shown that a passive scalar displays a direct cascade towards the small scales while the active magnetic potential builds up large-scale structures in an inverse cascade process. Correlations between scalar input and particle trajectories are found to be responsible for those dramatic differences as well as for the behavior of dissipative anomalies.Comment: Revised version, Phys. Rev. Lett., in pres

    Inference in particle tracking experiments by passing messages between images

    Full text link
    Methods to extract information from the tracking of mobile objects/particles have broad interest in biological and physical sciences. Techniques based on simple criteria of proximity in time-consecutive snapshots are useful to identify the trajectories of the particles. However, they become problematic as the motility and/or the density of the particles increases due to uncertainties on the trajectories that particles followed during the images' acquisition time. Here, we report an efficient method for learning parameters of the dynamics of the particles from their positions in time-consecutive images. Our algorithm belongs to the class of message-passing algorithms, known in computer science, information theory and statistical physics as Belief Propagation (BP). The algorithm is distributed, thus allowing parallel implementation suitable for computations on multiple machines without significant inter-machine overhead. We test our method on the model example of particle tracking in turbulent flows, which is particularly challenging due to the strong transport that those flows produce. Our numerical experiments show that the BP algorithm compares in quality with exact Markov Chain Monte-Carlo algorithms, yet BP is far superior in speed. We also suggest and analyze a random-distance model that provides theoretical justification for BP accuracy. Methods developed here systematically formulate the problem of particle tracking and provide fast and reliable tools for its extensive range of applications.Comment: 18 pages, 9 figure

    Shear effects on passive scalar spectra

    Full text link
    The effects of a large-scale shear on the energy spectrum of a passively advected scalar field are investigated. The shear is superimposed on a turbulent isotropic flow, yielding an Obukhov-Corrsin k5/3k^{-5/3} scalar spectrum at small scales. Shear effects appear at large scales, where a different, anisotropic behavior is observed. The scalar spectrum is shown to behave as k4/3k^{-4/3} for a shear fixed in intensity and direction. For other types of shear characteristics, the slope is generally intermediate between the -5/3 Obukhov-Corrsin's and the -1 Batchelor's values. The physical mechanisms at the origin of this behaviour are illustrated in terms of the motion of Lagrangian particles. They provide an explanation to the scalar spectra shallow and dependent on the experimental conditions observed in shear flows at moderate Reynolds numbers.Comment: 10 LaTeX pages,3 eps Figure

    Bifractality of the Devil's staircase appearing in the Burgers equation with Brownian initial velocity

    Full text link
    It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil's staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations.Comment: 12 pages, LaTe

    Scalar transport in compressible flow

    Full text link
    Transport of scalar fields in compressible flow is investigated. The effective equations governing the transport at scales large compared to those of the advecting flow are derived by using multi-scale techniques. Ballistic transport generally takes place when both the solenoidal and the potential components of the velocity do not vanish, despite of the fact that it has zero average value. The calculation of the effective ballistic velocity VbV_b is reduced to the solution of one auxiliary equation. An analytic expression for VbV_b is derived in some special instances, i.e. flows depending on a single coordinate, random with short correlation times and slightly compressible cellular flow. The effective mean velocity VbV_b vanishes for velocity fields which are either incompressible or potential and time-independent. For generic compressible flow, the most general conditions ensuring the absence of ballistic transport are isotropy and/or parity invariance. When VbV_b vanishes (or in the frame of reference moving with velocity VbV_b), standard diffusive transport takes place. It is known that diffusion is always enhanced by incompressible flow. On the contrary, we show that diffusion is depleted in the presence of time-independent potential flow. Trapping effects due to potential wells are responsible for this depletion. For time-dependent potential flow or generic compressible flow, transport rates are enhanced or depleted depending on the detailed structure of the velocity field.Comment: 27 pages, submitted to Physica
    corecore